

SPECTRAL MEASURES OF SPIKED RANDOM MATRICES

NATHAN NOIRY Université Paris Nanterre

ADDITIVE PERTURBATION

For all $n \ge 1$, we consider the following $n \times n$ random matrix:

$$W_n = \frac{1}{\sqrt{n}} X_n + \theta e_1 e_1^T,$$

where $\theta \ge 0$ and

• X_n is a symmetric $n \times n$ random matrix with i.i.d. entries that are centered and reduced;

• e_1 is the first vector of the canonical basis.

Let $\lambda_1(W_n) \geq \cdots \geq \lambda_n(W_n)$ be the eigenvalues of W_n and $\phi_1(W_n), \ldots, \phi_n(W_n)$ the associated eigenvectors.

MULTIPLICATIVE PERTURBATION

For all $n \ge 1$, we consider the following $n \times n$ random matrix:

$$S_n = \frac{1}{n} \Sigma_n^{1/2} X_n X_n^T \Sigma_n^{1/2},$$

where $\theta \ge 1$ and

• X_n is a $n \times \alpha n$ ($\alpha \ge 1$) random matrix with i.d.d. entries that are centered and reduced;

• $\Sigma_n = \text{Diag}(\theta, 1, \dots, 1)$ is of size $n \times n$.

Let $\lambda_1(S_n) \geq \cdots \geq \lambda_n(S_n)$ be the eigenvalues of S_n and $\phi_1(S_n), \ldots, \phi_n(S_n)$ the associated eigenvectors.

SPECTRAL MEASURES IN DIRECTION e_1

Heuristically, when $\theta \gg 1$, it should be close to an eigenvalue of W_n (resp. S_n) and its eigenvector should be close to e_1 . In order to reveal the influence of θ at a macroscopical level, one should therefore look at a statistic which *projects* the spectrum of W_n (resp. S_n) onto e_1 . This is precisely the definition of the spectral measures in direction e_1 :

$$\mu_{(W_n,e_1)} := \sum_{i=1}^n |\langle \phi_i(W_n), e_1 \rangle|^2 \,\delta_{\lambda_i(W_n)} \quad \text{and} \quad \mu_{(S_n,e_1)} := \sum_{i=1}^n |\langle \phi_i(S_n), e_1 \rangle|^2 \,\delta_{\lambda_i(S_n)}.$$

Their Stieltjes transforms are given by $\langle e_1, (W_n - z)^{-1}e_1 \rangle$ and $\langle e_1, (S_n - z)^{-1}e_1 \rangle$. These quantities have been carefully analyzed, the most recent results being the local laws obtained by Knowles and Yin in [1]. For fixed z, it implies the pointwise convergence of the Stieltjes transforms. Interestingly, the associated limiting probability measures are explicit, given respectively by:

$$\mu_{sc,\theta}(\mathrm{d}x) = \frac{\sqrt{4-x^2}\mathbf{1}_{|x|\leq 2}\mathrm{d}x}{2\pi(\theta^2 - \theta x + 1)} + \mathbf{1}_{|\theta|>1} \left(1 - \frac{1}{\theta^2}\right) \delta_{\theta + \frac{1}{\theta}}(\mathrm{d}x) \quad \text{and} \quad \mu_{\alpha,\theta}(\mathrm{d}x) = \frac{\theta\sqrt{(b-x)(x-a)}\mathbf{1}_{(a,b)}(x)\mathrm{d}x}{2\pi x(x(1-\theta) + \theta(\alpha\theta - \alpha + 1))} + d_{\alpha,\theta}\mathbf{1}_{|\theta-1|>\frac{1}{\sqrt{\alpha}}}\delta_{x_{\alpha,\theta}}(\mathrm{d}x),$$

where $a, b = (1 \mp \sqrt{\alpha})^2$ and where $x_{\alpha,\theta}$ and $d_{\alpha,\theta}$ are explicit constants.

ADDITIVE MODEL: OUTLIERS	MULTIPLICATIVE MODEL: OUTLIERS
When $\theta > 1$, we recover the following classical convergence:	When $\theta > 1 + 1/\sqrt{\alpha}$, we recover the following classical convergence:
• $\lambda_1(W_n) \xrightarrow{\mathbb{P}} \theta + 1/\theta;$	• $\lambda_1(S_n) \stackrel{\mathbb{P}}{\longrightarrow} x_{\alpha,\theta};$
• $ \langle \phi_1(W_n), e_1 \rangle \xrightarrow{\mathbb{P}} \sqrt{1 - 1/\theta^2}.$	• $ \langle \phi_1(W_n), e_1 \rangle \xrightarrow{\mathbb{P}} \sqrt{d_{\alpha, \theta}}.$
ADDITIVE MODEL: OVERLAPS	MULTIPLICATIVE MODEL: OVERLAPS
ADDITIVE MODEL: OVERLAPS Let $x \in (-2, 2)$ and $\varepsilon > 0$. Then for any sequence $1 \gg \varepsilon_n \gg n^{-1/2+\varepsilon}$, denoting	MULTIPLICATIVE MODEL: OVERLAPS Let $x \in (a, b)$ and $\varepsilon > 0$. Then, for any sequence $1 \gg \varepsilon_n \gg n^{-1/2+\varepsilon}$, denoting
ADDITIVE MODEL: OVERLAPS Let $x \in (-2, 2)$ and $\varepsilon > 0$. Then for any sequence $1 \gg \varepsilon_n \gg n^{-1/2+\varepsilon}$, denoting $\mathcal{I}_{\varepsilon_n}(x) = \{i : \lambda_i(W_n) - x \le \varepsilon_n\},\$	$\begin{array}{l} \textbf{MULTIPLICATIVE MODEL: OVERLAPS}\\\\ \text{Let } x \in (a,b) \text{ and } \varepsilon > 0. \text{ Then, for any sequence } 1 \gg \varepsilon_n \gg n^{-1/2+\varepsilon} \text{, denoting}\\\\ \mathcal{I}_{\varepsilon_n}(x) = \left\{i : \left \lambda_i(W_n) - x\right \leq \varepsilon_n\right\}, \end{array}$

SKETCH OF PROOFS

We focus on the Wigner case as the arguments are the same in the Wishart setting.

- Outliers. The largest eigenvalue $\lambda_1(n^{-1/2}X_n)$ converges in probability towards 2. When $\theta > 0$, the eigenvalues of W_n interlace with those of $n^{-1/2}X_n$. Therefore, only $\lambda_1(W_n)$ may be asymptotically larger than 2. It implies that the atom of $\mu_{sc,\theta}$ at $\theta + 1/\theta$, which exists whenever $\theta > 1$, is the limit of $\lambda_1(W_n)$ in probability. Moreover, its mass is the limit of the projection of $\phi_1(W_n)$ onto the direction of the spike.
- Overlaps. Let $x \in (-2,2)$, define $I_{\varepsilon_n}(x) := [x \varepsilon_n, x + \varepsilon_n]$ and denote $f_{sc,\theta}$ the density of $\mu_{sc,\theta}$. The idea is to estimate $\mu_{(W_n,e_1)}(I_{\varepsilon_n}(x))$ in two different ways. Firstly, $\mu_{(W_n,e_1)}(I_{\varepsilon_n}(x)) \approx 1$ $2\varepsilon_n f_{sc,\theta}(x) + o_1(1)$ for a small error $o_1(1)$. Secondly, for a small error $o_2(1)$, if μ_{W_n} denotes the empirical spectral measure of W_n :

$$\mu_{(W_n,e_1)}(I_{\varepsilon_n}(x)) = \left(\frac{n}{|\mathcal{I}_{\varepsilon_n}(x)|} \sum_{i \in \mathcal{I}_{\varepsilon_n}(x)} \left| \langle \phi_i(W_n), e_1 \rangle \right|^2 \right) \mu_{W_n}(I_{\varepsilon_n}(x)) \approx \left(\frac{n}{|\mathcal{I}_{\varepsilon_n}(x)|} \sum_{i \in \mathcal{I}_{\varepsilon_n}(x)} \left| \langle \phi_i(W_n), e_1 \rangle \right|^2 \right) \times \left(2\varepsilon_n f_{sc,0}(x) + o_2(1)\right).$$

Using local laws obtained by Knowles and Yin [1], one can prove that $o_1(1)$ and $o_2(1)$ are of smaller order than ε_n with high probability. Therefore, the left-hand side of (1) converges in probability towards the ratio of the densities $f_{sc,\theta}(x)/f_{sc,0}(x) = (\theta^2 - \theta x + 1)^{-1}$.

RELATED RESULTS

• Generalizations. The present results are taken from [4] and are particular instances of the study of the more general deformed models $W_n = n^{-1/2}X_n + A_n$ and $S_n = n^{-1}\Sigma_n^{1/2}X_n X_n^T \Sigma_n^{1/2}$, for general perturbations A_n and Σ_n whose normalized spectra respectively converge towards deterministic probability measures μ_A and μ_{Σ} . In these cases, the empirical spectral measures of W_n and S_n respectively converge towards the free convolution $\mu_{sc} \boxplus \mu_A$ and the free product $\mu_{\alpha} \boxtimes \mu_{\Sigma}$, where μ_{sc} is the semicircle law and μ_{α} the Marchenko-Pastur law with parameter α . If θ is an eigenvalue of A_n (resp. S_n) with associated eigenvector v_1 , the spectral measures in direction v_1 still converge towards deterministic probability measures $\mu_{sc,A,\theta}$ and $\mu_{\alpha,\Sigma,\theta}$, whose Stieltjes transforms are explicit functions of the Stieltjes transforms of $\mu_{sc} \boxplus \mu_A$ and $\mu_{\alpha} \boxtimes \mu_{\Sigma}$. In these settings, the outliers of W_n and S_n still correspond to the atoms of the limiting spectral measures and we prove the convergence of overlaps between the eigenvectors of W_n (resp. S_n) and v_1 , averaged on small scales, towards the ratio of the densities of $\mu_{sc,A,\theta}$ (resp. $\mu_{\alpha,\Sigma,\theta}$) and $\mu_{sc} \boxplus \mu_A$ (resp. $\mu_{\alpha} \boxtimes \mu_{\Sigma}$).

• Other works. Consider the general deformed models $W_n = n^{-1/2}X_n + A_n$ and $S_n = n^{-1}\Sigma_n^{1/2}X_nX_n^T\Sigma_n^{1/2}$ introduced above and suppose that θ is an eigenvalue of A_n (resp. Σ_n) with associated eigenvector v_1 . When θ belongs to the support of the asymptotic spectrum of A_n (resp. Σ_n), the convergence of the overlaps between the eigenvectors of W_n (resp. S_n) and v_1 is a *microscopic* confirmation of the results of Allez and Bouchaud [2] (in the Wigner setting) and Ledoit and Péché [3] (in the Wishart setting), who derived the asymptotic behavior of the overlaps $|\langle \phi_{\lambda}, v_{\gamma} \rangle|^2$ by taking the average over eigenvectors ϕ_{λ} associated to eigenvalues of W_n (resp. S_n) belonging to a *macroscopic* part of Supp ($\mu_{sc} \boxplus \mu_A$) (resp. Supp ($\mu_{\alpha} \boxtimes \mu_{\Sigma}$)) and the average over eigenvectors v_{γ} of A_n (resp. Σ_n) belonging to a *macroscopic* part of the asymptotic spectrum of A_n (resp. Σ_n). When θ does not belong to the support of the asymptotic spectrum of A_n (resp. Σ_n), such a macroscopic average is not available whereas the spectral measure approach still works.

References

[1] Antti Knowles and Jun Yin. Anisotropic local laws for random matrices. *Probab. Theory Related Fields*, 169(1-2):257–352, 2017.

[2] Romain Allez and Jean-Philippe Bouchaud. Eigenvector dynamics under free addition. *Random Matrices Theory Appl.*, 3(3):1450010, 17, 2014.

[3] Olivier Ledoit and Sandrine Péché. Eigenvectors of some large sample covariance matrix ensembles. Probab. Theory Related Fields, 151(1-2):233–264, 2011.

[4] Nathan Noiry. Spectral Measures of Spiked Random Matrices. Preprint, arXiv:1903.11731, 2019.